Ergodic Theory - Week 7

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

1 Classifying measure preserving systems

- **P1.** Show that any factor of an ergodic system is ergodic. Find an example of a non-ergodic system with an ergodic factor.
- **P2.** Let G be a compact abelian group. Show that a group rotation by some $\alpha \in G$ is ergodic if and only if $\{n\alpha\}_{n\in\mathbb{Z}}$ is a dense subgroup of G.

Hint: You may use that any function in $L^2(G)$ has a Fourier expansion $f = \sum_{\chi} \widetilde{f}(\chi)\chi$ where convergence is understood to be in the $L^2(G)$ -norm.

- **P3.** We call a system (X, \mathcal{B}, μ, T) totally ergodic if for every $k \in \mathbb{N}$ the map T^k is ergodic with respect to μ .
 - (a) Show that if (X, \mathcal{B}, μ, T) is totally ergodic, then for any $a, b \in \mathbb{N}$ we have

$$\lim_{N \to +\infty} \left\| \frac{1}{N} \sum_{n=1}^{N} T^{an+b} f - \int f \, d\mu \right\|_{L^{2}(\mu)} = 0$$

- (b) Show that a system is totally ergodic if and only if every eigenfunction of the system with corresponding eigenvalue that is a root of unity is constant almost everywhere.
- **P4.** (a) Let (X, \mathcal{B}, μ, T) be an ergodic measure preserving system, and let $\alpha \in (0, 1)$ such that $e(\alpha)$ is an eigenvalue. Show that there exists a non-trivial group rotation that is a factor of (X, \mathcal{B}, μ, T) .

Hint: When a = r/q is rational (with q minimal among all such rational eigenvalues), construct a T^q -invariant set B such that $\mu(B) = 1/q$.

(b) Show that given any countable subgroup $K \leq \mathbb{S}^1$, there exists a measure preserving system (X, \mathcal{B}, μ, T) on a Borel probability space such that K is the point-spectrum of T.

Hint: To construct the system take $X = \hat{K}$, $\mu = m_X$ the normalized Haar measure on X, and T to be some appropriate group rotation.